Options
Karagiannis, Christos
Blood Flow Restriction Training in Nonspecific Shoulder Pain: Study Protocol of a Crossover Randomised Controlled Trial
2023-10, Pamboris, George M., Karagiannis, Christos, Kyriakos Pavlou, Christos Savva, Vasileios Korakakis, George Ploutarchou, Antonis Constantinou
“Nonspecific shoulder pain” encompasses various non-traumatic musculoskeletal shoulder disorders, diverging from diagnostic terminologies that refer to precise tissue-oriented clinical diagnosis. Blood flow restriction (BFR) training, involving partial arterial inflow and complete venous outflow restriction, has exhibited acute hypoalgesic effects primarily in healthy populations by increasing their pain thresholds. This study aims to examine whether a single BFR session with low-load exercises can alleviate pain perception among nonspecific shoulder pain patients. Conducted as a single-blind crossover randomised clinical trial, 48 adults (age range: 18 to 40) presenting with nonspecific shoulder pain will partake in two trial sessions. Random assignment will place participants into BFR or sham BFR groups and ask them to perform one exercise with BFR. Subsequently, participants will complete a shoulder girdle loading regimen comprising six exercises. The second session will involve participants switching treatment groups. Pain pressure thresholds (PPTs), shoulder pain and disability via the shoulder pain and disability index (SPADI), maximal voluntary isometric contraction (MVIC) of shoulder external rotators, pain during active abduction, and peak pain during shoulder external rotation will be evaluated using the numeric pain rating scale (NPRS). Immediate post-exercise assessments will include patient-perceived pain changes using the global rating of change scale (GROC) and participant-rated perceived exertion (RPE), employing a modified Borg’s scale (Borg CR10) post-BFR or sham BFR exercise session. Each session will encompass three assessment periods, and a combination of mixed-effect models and descriptive statistics will underpin the analysis. This protocol was approved by Cyprus National Bioethics Committee (ΕΕΒΚ/2023/48), and was registered in ClinicalTrials.gov (Registration number: NCT05956288). Conclusion: The anticipated outcomes of this study illuminated the acute effects of BFR training on pain perception within the context of nonspecific shoulder pain, potentially advancing strategies for managing pain intensity using BFR techniques.
The effects of upper body blood flow restriction training on muscles located proximal to the applied occlusive pressure: A systematic review with meta-analysis
2023-03, Kyriakos Pavlou, Vasileios Korakakis, Rod Whiteley, George Ploutarchou, Christos Savva, Karagiannis, Christos, Zulkarnain Jaafar
Background Blood flow restriction combined with low load resistance training (LL-BFRT) is associated with increases in upper limb muscle strength and size. The effect of LL-BFRT on upper limb muscles located proximal to the BFR cuff application is unclear. Objective The aim of this systematic review was to evaluate the effect of LL-BFRT compared to low load, or high load resistance training (LL-RT, HL-RT) on musculature located proximal to cuff placement. Methods Six electronic databases were searched for randomized controlled trials (RCTs). Two reviewers independently evaluated the risk of bias using the PEDro scale. We performed a meta-analysis using a random effects model, or calculated mean differences (fixed-effect) where appropriate. We judged the certainty of evidence using the GRADE approach. Results The systematic literature searched yielded 346 articles, of which 9 studies were eligible. The evidence for all outcomes was of very low to low certainty. Across all comparisons, a significant increase in bench press and shoulder flexion strength was found in favor of LL-BFRT compared to LL-RT, and in shoulder lean mass and pectoralis major thickness in favor of the LL-BFRT compared to LL-RT and HL-RT, respectively. No significant differences were found between LL-BFRT and HL-RT in muscle strength. Conclusion With low certainty LL-BFRT appears to be equally effective to HL-RT for improving muscle strength in upper body muscles located proximal to the BFR stimulus in healthy adults. Furthermore, LL-BFRT may induce muscle size increase, but these adaptations are not superior to LL-RT or HL-RT.