Now showing 1 - 10 of 26
  • Publication
    Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy
    (2016-12-01)
    Voutouri, Chrysovalantis
    ;
    Polydorou, Christiana
    ;
    ; ;
    Stylianopoulos, Triantafyllos
    ;
    Voutouri, Chrysovalantis
    Despite the important role that mechanical forces play in tumor growth and therapy, the contribution of swelling to tumor mechanopathology remains unexplored. Tumors rich in hyaluronan exhibit a highly negative fixed charge density. Repulsive forces among these negative charges as well as swelling of cancer cells due to regulation of intracellular tonicity can cause tumor swelling and development of stress that might compress blood vessels, compromising tumor perfusion and drug delivery. Here, we designed an experimental strategy, using four orthotopic tumor models, to measure swelling stress and related swelling to extracellular matrix components, hyaluronan and collagen, as well as to tumor perfusion. Subsequently, interventions were performed to measure tumor swelling using matrix-modifying enzymes (hyaluronidase and collagenase) and by repurposing pirfenidone, an approved antifibrotic drug. Finally, in vitro experiments on cancer cell spheroids were performed to identify their contribution to tissue swelling. Swelling stress was measured in the range of 16 to 75 mm Hg, high enough to cause vessel collapse. Interestingly, while depletion of hyaluronan decreased swelling, collagen depletion had the opposite effect, whereas the contribution of cancer cells was negligible. Furthermore, histological analysis revealed the same linear correlation between tumor swelling and the ratio of hyaluronan to collagen content when data from all tumor models were combined. Our data further revealed an inverse relation between tumor perfusion and swelling, suggesting that reduction of swelling decompresses tumor vessels. These results provide guidelines for emerging therapeutic strategies that target the tumor microenvironment to alleviate intratumoral stresses and improve vessel functionality and drug delivery.
  • Publication
    Proteomics of osteoarthritic chondrocytes and cartilage
    (2010-10-01)
    Iliopoulos, Dimitrios C.
    ;
    ;
    Tsezou, Aspasia N.
    Osteoarthritis (OA) is characterized by irreversible destruction of the articular cartilage. OA affects more than 100 million individuals worldwide and has a major impact on patients quality of life. The lack of effective therapy that prevents, inhibits or reverses the progress of OA often leaves only the option of surgical interventions. Thus, identification of the factors that contribute to OA pathogenesis is necessary for better understanding of OA pathobiology and discovery of effective therapies. Recent proteomic studies have been conducted to identify pathological mediators and biomarkers of OA, which have pinpointed novel pathways involved in cartilage degeneration. This article summarizes the recent findings, compares major techniques used in OA proteomics and discusses key proteins in OA and their potential use as therapeutic targets.
  • Publication
    Comparative proteomic analysis of hypertrophic chondrocytes in osteoarthritis
    (2015-01-01)
    Tsolis, K.
    ;
    Bei, Ekaterini S.
    ;
    Papathanasiou, Ioanna
    ;
    Kostopoulou, Fotini
    ;
    ;
    Kalantzaki, Kalliopi D.
    ;
    Malizos, Konstantinos N.
    ;
    Zervakis, Mihalis
    ;
    Tsezou, Aspasia N.
    ;
    Economou, Anastassios
    Background: Osteoarthritis (OA) is a multi-factorial disease leading progressively to loss of articular cartilage and subsequently to loss of joint function. While hypertrophy of chondrocytes is a physiological process implicated in the longitudinal growth of long bones, hypertrophy-like alterations in chondrocytes play a major role in OA. We performed a quantitative proteomic analysis in osteoarthritic and normal chondrocytes followed by functional analyses to investigate proteome changes and molecular pathways involved in OA pathogenesis. Methods: Chondrocytes were isolated from articular cartilage of ten patients with primary OA undergoing knee replacement surgery and six normal donors undergoing fracture repair surgery without history of joint disease and no OA clinical manifestations. We analyzed the proteome of chondrocytes using high resolution mass spectrometry and quantified it by label-free quantification and western blot analysis. We also used WebGestalt, a web-based enrichment tool for the functional annotation and pathway analysis of the differentially synthesized proteins, using the Wikipathways database. ClueGO, a Cytoscape plug-in, is also used to compare groups of proteins and to visualize the functionally organized Gene Ontology (GO) terms and pathways in the form of dynamical network structures. Results: The proteomic analysis led to the identification of a total of ∼2400 proteins. 269 of them showed differential synthesis levels between the two groups. Using functional annotation, we found that proteins belonging to pathways associated with regulation of the actin cytoskeleton, EGF/EGFR, TGF-β, MAPK signaling, integrin-mediated cell adhesion, and lipid metabolism were significantly enriched in the OA samples (p ≤10-5). We also observed that the proteins GSTP1, PLS3, MYOF, HSD17B12, PRDX2, APCS, PLA2G2A SERPINH1/HSP47 and MVP, show distinct synthesis levels, characteristic for OA or control chondrocytes. Conclusion: In this study we compared the quantitative changes in proteins synthesized in osteoarthritic compared to normal chondrocytes. We identified several pathways and proteins to be associated with OA chondrocytes. This study provides evidence for further testing on the molecular mechanism of the disease and also propose proteins as candidate markers of OA chondrocyte phenotype.
  • Publication
    Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis
    (2018-05-04) ;
    Stylianopoulos, Triantafyllos
    Metastasis is a multistep process in which tumor extracellular matrix (ECM) and cancer cell cytoskeleton interactions are pivotal. ECM is connected, through integrins, to the cell's adhesome at cell-ECM adhesion sites and through them to the actin cytoskeleton and various downstream signaling pathways that enable the cell to respond to external stimuli in a coordinated manner. Cues from cell-adhesion proteins are fundamental for defining the invasive potential of cancer cells, and many of these proteins have been proposed as potent targets for inhibiting cancer cell invasion and thus, metastasis. In addition, ECM accumulation is quite frequent within the tumor microenvironment leading in many cases to an intense fibrotic response, known as desmoplasia, and tumor stiffening. Stiffening is not only required for the tumor to be able to displace the host tissue and grow in size but also contributes to cell-ECM interactions and can promote cancer cell invasion to surrounding tissues. Here, we review the role of cell adhesion and matrix stiffness in cancer cell invasion and metastasis.
  • Publication
    Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis
    (2015-06-10) ;
    Bogdanos, Dimitrios P.
    Migfilin is a novel cell-matrix adhesion protein known to interact with Vasodilator Stimulated Phosphoprotein (VASP) and be localized both at cell-matrix and cell-cell adhesions. To date there is nothing known about its role in hepatocellular carcinoma (HCC). As matrix is important in metastasis, we aimed to investigate the Migfilin's role in HCC metastasis using two human HCC cell lines that differ in their metastatic potential; non-invasive Alexander cells and the highly invasive HepG2 cells. We silenced Migfilin by siRNA and studied its effect on signaling and metastasis-related cellular properties. We show that Migfilin's expression is elevated in HepG2 cells and its silencing leads to upregulation of actin reorganization-related proteins, namely phosphor-VASP (Ser157 and Ser239), Fascin-1 and Rho-kinase-1, promoting actin polymerization and inhibiting cell invasion. Phosphor-Akt (Ser473) is decreased contributing to the upregulation of free and phosphor-β-catenin (Ser33/37Thr41) and inducing proliferation. Migfilin elimination upregulates Extracellular Signal-regulated kinase, which increases cell adhesion in HepG2 and reduces invasiveness. This is the first study to reveal that Migfilin inhibition can halt HCC metastasis in vitro, providing the molecular mechanism involved and presenting Migfilin as potential therapeutic target against HCC metastasis.
  • Publication
    Elimination of ras suppressor-1 from hepatocellular carcinoma cells hinders their in vitro metastatic properties
    (2015-01-01) ;
    Bogdanos, Dimitrios P.
    Background/Aim: Extracellular matrix (ECM) is of great significance for homeostasis in the liver. In fact, one of the stages leading to hepatocellular carcinoma (HCC) includes accumulation of excess ECM. Ras Suppressor-1 (RSU-1) is localized in the cell-ECM adhesions but its role in HCC is unexplored. Materials and Methods: We investigated the expression and role of RSU-1 in two HCC cell lines that differ in aggressiveness; non-invasive Alexander cells and highly invasive HepG2 cells. Results: Our results showed that RSU-1 expression is elevated in HepG2 cells both at the mRNA and protein level, while its silencing leads to increased cell proliferation in both cell lines. Interestingly, RSU-1 depletion from highly invasive HepG2 cells reduces cell adhesion and invasion. Conclusion: This is the first study to provide in vitro evidence for the involvement of RSU-1 in HCC cell invasive behavior.
  • Publication
    Inhibition of breast cancer cell invasion by Ras suppressor-1 (RSU-1) silencing is reversed by growth differentiation factor-15 (GDF-15)
    (2019-01-01) ;
    Louca, Maria
    ;
    ;
    Minadakis, George
    ;
    Spyrou, George M.
    ;
    Stylianopoulos, Triantafyllos
    Extracellular matrix (ECM)-related adhesion proteins are important in metastasis. Ras suppressor-1 (RSU-1), a suppressor of Ras-transformation, is localized to cell–ECM adhesions where it interacts with the Particularly Interesting New Cysteine-Histidine rich protein (PINCH-1), being connected to Integrin Linked Kinase (ILK) and alpha-parvin (PARVA), a direct actin-binding protein. RSU-1 was also found upregulated in metastatic breast cancer (BC) samples and was recently demonstrated to have metastasis-promoting properties. In the present study, we transiently silenced RSU-1 in BC cells, MCF-7 and MDA-MB-231. We found that RSU-1 silencing leads to downregulation of Growth Differentiation Factor-15 (GDF-15), which has been associated with both actin cytoskeleton reorganization and metastasis. RSU-1 silencing also reduced the mRNA expression of PINCH-1 and cell division control protein-42 (Cdc42), while increasing that of ILK and Rac regardless of the presence of GDF-15. However, the downregulation of actin-modulating genes PARVA, RhoA, Rho associated kinase-1 (ROCK-1), and Fascin-1 following RSU-1 depletion was completely reversed by GDF-15 treatment in both cell lines. Moreover, complete rescue of the inhibitory effect of RSU-1 silencing on cell invasion was achieved by GDF-15 treatment, which also correlated with matrix metalloproteinase-2 expression. Finally, using a graph clustering approach, we corroborated our findings. This is the first study providing evidence of a functional association between RSU-1 and GDF-15 with regard to cancer cell invasion.
  • Publication
    The role of fibroblast growth factors and their receptors in gliomas: The mutations involved
    (2018-01-01)
    Georgiou, Vasiliki
    ;
    ;
    Georgiou, Vasiliki
    The central nervous system (CNS) comprises of neurons, which are responsible for impulse transmission, and glial cells, which surround neurons providing protection and nutrition. Glial cells are categorized into astrocytes, oligodendrocytes, microglial cells, and ependymal cells. Tumors forming from glial cells are called gliomas, and they are classified accordingly into astrocytomas, oligodendrogliomas, and ependymomas. Gliomas are characterized by high mortality rates and degree of malignancy, heterogeneity, and resistance to treatment. Among the molecular players implicated in glioma pathogenesis are members of the fibroblast growth factor (FGF) superfamily as well as their receptors (FGFRs). In the present study, we provide a review of the literature on the role of FGFs and FGFRs in glioma pathogenesis. We also demonstrate that FGFs, and particularly FGF1 and FGF2, bear a variety of mutations in gliomas, while FGFRs are also crucially involved. In fact, several studies show that in gliomas, FGFRs bear mutations, mainly in the tyrosine kinase domains. Specifically, it appears that FGFR1-TACC1 and FGFR3-TACC3 fusions are common in these receptors. A better understanding of the mutations and the molecular players involved in glioma formation will benefit the scientific community, leading to the development of more effective and innovative therapeutic approaches.
  • Publication
    Tuning the Mechanical Properties of BIEE-Crosslinked Semi-Interpenetrating, Double-Hydrophilic Hydrogels
    (2018-06-01)
    Papaparaskeva, Georgia
    ;
    Voutouri, Chrysovalantis
    ;
    ;
    Achilleos, Mariliz
    ;
    Šafařík, Ivo
    ;
    Pospíšková, Kristýna
    ;
    Stylianopoulos, Triantafyllos
    ;
    Krasia-Christoforou, Theodora
    ;
    Papaparaskeva, Georgia
    Double-hydrophilic, semi-interpenetrating (semi-IPN) hydrogels are synthesized by encapsulating hydrophilic polyvinylpyrrolidone (PVP) linear chains in structure-defined 1,2-bis-(2-iodoethoxy)ethane (BIEE)-crosslinked (poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA) hydrogels. A series of semi-IPN double-hydrophilic hydrogels are prepared in which the pDMAEMA/BIEE content is kept the same and only the PVP content is varied, from 0 up to 33 wt%. The mechanical properties of the water-swollen hydrogels are experimentally evaluated under unconfined compressive loading conditions, while a nonlinear hyperelastic constitutive equation is used to predict their mechanical response. No significant difference is found in the mechanical response of the semi-IPN PVP/pDMAEMA/BIEE hydrogel containing 5 wt% PVP compared to the pDMAEMA/BIEE analog, however, for greater loading percentages (15 and 33 wt% of PVP), the semi-IPN hydrogels exhibit less stiffness/higher ductility. Furthermore, in vitro biocompatibility studies are carried out for the pDMAEMA/BIEE and the semi-IPN PVP/pDMAEMA/BIEE, indicating that both the formulations exhibit no toxicity in cultured cells.
  • Publication
    Migfilin's elimination from osteoarthritic chondrocytes further promotes the osteoarthritic phenotype via β-catenin upregulation
    (2013-01-11) ;
    Papanikolaou, Vassilis K.
    ;
    Dubos, Stephanie
    ;
    Papathanasiou, Ioanna
    ;
    Giotopoulou, Nikolina
    ;
    Valiakou, Vaia
    ;
    Wu, Chuanyue
    ;
    Malizos, Konstantinos N.
    ;
    Tsezou, Aspasia N.
    Osteoarthritis (OA) is a debilitating disease of the joints characterized by cartilage degradation but to date there is no available pharmacological treatment to inhibit disease progression neither is there any available biomarker to predict its development. In the present study, we examined the expression level and possible involvement of novel cell-ECM adhesion-related molecules such as Iintegrin Linked Kinase (ILK), PINCH, parvin, Mig-2 and Migfilin in OA pathogenesis using primary human articular chondrocytes from healthy individuals and OA patients. Our findings show that only ILK and Migfilin were upregulated in OA compared to the normal chondrocytes. Interestingly, Migfilin silencing in OA chondrocytes rather exacerbated than ameliorated the osteoarthritic phenotype, as it resulted in even higher levels of catabolic and hypertrophic markers while at the same time induced reduction in ECM molecules such as aggrecan. Furthermore, we also provide a link between Migfilin and β-catenin activation in OA chondrocytes, showing Migfilin to be inversely correlated with β-catenin. Thus, the present study emphasizes for the first time to our knowledge the role of Migfilin in OA and highlights the importance of cell-ECM adhesion proteins in OA pathogenesis.