Now showing 1 - 9 of 9
Loading...
Thumbnail Image
Publication

The European Large Area ISO Survey -- VI. Discovery of a new hyperluminous infrared galaxy

2001, Efstathiou, Andreas, T. Morel, S. Serjeant, I. Marquez, J. Masegosa, P. Heraudeau, C. Surace, A. Verma, S. Oliver, M. Rowan-Robinson, I. Georgantopoulos, D. Farrah, D. M. Alexander, I. Perez-Fournon, C. J. Willott, F. Cabrera-Guerra, E. A. Gonzalez-Solares, A. Cabrera-Lavers, J. I. Gonzalez-Serrano, P. Ciliegi, F. Pozzi, I. Matute, H. Flores

We report the discovery of the first hyperluminous infrared galaxy (HyLIG) in the course of the European Large Area ISO Survey (ELAIS). This object has been detected by ISO at 6.7, 15 and 90 μm, and is found to be a broad-line, radio-quiet quasar at a redshift z = 1.099. From a detailed multicomponent model fit of the spectral energy distribution, we derive a total IR luminosity LIR (1-1000 μm) ≈ 1.0 × 1013 h-265 L⊙ (0 = 0.5), and discuss the possible existence of a starburst contributing to the far-IR output. Observations to date present no evidence for lens magnification. This galaxy is one of the very few HyLIGs with a X-ray detection. On the basis of its soft X-ray properties, we suggest that this broad-line object may be the face-on analogue of narrow-line, Seyfert-like HyLIGs.

Loading...
Thumbnail Image
Publication

e-MERLIN and VLBI observations of the luminous infrared galaxy IC 883: a nuclear starburst and an AGN candidate revealed

2012, Efstathiou, Andreas, C. Romero-Cañizales, M. A. Pérez-Torres, A. Alberdi, M. K. Argo, R. J. Beswick, E. Kankare, F. Batejat, S. Mattila, J. E. Conway, S. T. Garrington, T. W. B. Muxlow, S. D. Ryder, P. Väisänen

Context. The high star formation rates of luminous infrared galaxies (LIRGs) make them ideal places for core-collapse supernova (CCSN) searches. Massive star formation can often be found in coexistence with an active galactic nucleus (AGN), contributing jointly to the energy source of LIRGs. At radio frequencies, where light is unaffected by dust extinction, it is possible to detect compact components within the innermost LIRG nuclear regions, such as SNe and SN remnants, as well as AGN buried deep in the LIRG nuclei. Aims. Our study of the LIRG IC 883 aims at: (i) investigating the parsec-scale radio structure of the (circum-)nuclear regions of IC 883; (ii) detecting at radio frequencies the two recently reported circumnuclear SNe 2010cu and 2011hi, which were discovered by near-IR (NIR) adaptive optics observations of IC 883; and (iii) further investigating the nature of SN 2011hi at NIR wavelengths. Methods. We used the electronic European very long baseline interferometry (VLBI) Network (e-EVN) at 5 GHz, and the electronic Multi-Element Remotely Linked Interferometer Network (e-MERLIN) at 6.9 GHz, to observe contemporaneously the LIRG IC 883 at high angular-resolution (from tens to hundreds of milliarcsec) and with high sensitivity (<70 μJy), complemented by archival VLBI data at 5 GHz and 8.4 GHz. We also used the Gemini North telescope to obtain late-time JHK photometry for SN 2011hi. Results. The circumnuclear regions traced by e-MERLIN at 6.9 GHz have an extension of ∼ 1 kpc, at a position angle of 130°, and show a striking double-sided structure, which very likely corresponds to a warped rotating ring, in agreement with previous studies. Our e-EVN observations at 5 GHz and complementary archival VLBI data at 5 GHz and 8.4 GHz, reveal various milliarcsec compact components in the nucleus of IC 883. A single compact source, an AGN candidate, dominates the emission at both nuclear and circumnuclear scales, as imaged with the e-EVN and e-MERLIN, respectively. The other milliarcsec components are strongly indicative of ongoing nuclear CCSN activity. Our e-EVN observations also provided upper limits to the radio luminosity of the two SNe in IC 883 recently discovered at NIR wavelengths. We refine the classification of SN 2011hi as a Type IIP SN according to our latest epoch of Gemini North observations acquired in 2012, in agreement with a low-luminosity radio SN nature. We estimate a CCSN rate lower limit of 1.1 -0.6 +1.3 yr -1 for the entire galaxy, based on three nuclear radio SNe and the circumnuclear SNe 2010cu and 2011hi.

Loading...
Thumbnail Image
Publication

Submillimetre observations of hyperluminous infrared galaxies

2002, D. Farrah, S. Serjeant, M. Rowan-Robinson, A. Verma, Efstathiou, Andreas

We present submillimetre (sub-mm) photometry for 11 hyperluminous infrared galaxies (HLIRGs, LIR > 1013.0 h-265 L⊙) and use radiative transfer models for starbursts and active galactic nuclei (AGN) to examine the nature of the IR emission. In all the sources both a starburst and AGN are required to explain the total IR emission. The mean starburst fraction is 35 per cent, with a range spanning 80 per cent starburst-dominated to 80 per cent AGN-dominated. In all cases the starburst dominates at rest-frame wavelengths longwards of 50 μm, with star formation rates > 500 M⊙ yr-1. The trend of increasing AGN fraction with increasing IR luminosity observed in IRAS galaxies is observed to peak in the HLIRG population, and not increase beyond the fraction seen in the brightest ultraluminous infrared galaxies (ULIRGs). The AGN and starburst luminosities correlate, suggesting that a common physical factor, plausibly the dust masses, govern the luminosities of starbursts and AGN in HLIRGs. Our results suggest that the HLIRG population is composed both of ULIRG-like galaxy mergers and of young galaxies going through their maximal star formation periods whilst harbouring an AGN. The detection of coeval AGN and starburst activity in our sources implies that starburst and AGN activity, and the peak starburst and AGN luminosities, can be coeval in active galaxies generally. When extrapolated to high z our sources have comparable observed frame sub-mm fluxes to sub-mm survey sources. At least some high-z sub-mm survey sources are therefore likely to be composed of similar galaxy populations to those found in the HLIRG population. It is also plausible from these results that high-z sub-mm sources harbour heavily obscured AGN. The differences in X-ray and sub-mm properties between HLIRGs at z ∼ 1 and sub-mm sources at ∼3 implies some level of evolution between the two epochs. Either the mean AGN obscuration level is greater at z ∼ 3 than at z ∼ 1, or the fraction of IR-luminous sources at z ∼ 3 that contain AGN is smaller than that at z ∼ 1.

Loading...
Thumbnail Image
Publication

Galaxy evolution studies with the SPace IR telescope for cosmology and astrophysics (SPICA): The power of IR spectroscopy

2017-11-16, Efstathiou, Andreas, L. Spinoglio, A. Alonso-Herrero, L. Armus, M. Baes, J. Bernard-Salas, S. Bianchi, M. Bocchio, A. Bolatto, C. Bradford, J. Braine, F. J. Carrera, L. Ciesla, D. L. Clements, H. Dannerbauer, Y. Doi, E. Egami, J. A. Fernández-Ontiveros, A. Ferrara, J. Fischer, A. Franceschini, S. Gallerani, M. Giard, E. González-Alfonso, C. Gruppioni, P. Guillard, E. Hatziminaoglou, M. Imanishi, D. Ishihara, N. Isobe, H. Kaneda, M. Kawada, K. Kohno, J. Kwon, S. Madden, M. A. Malkan, S. Marassi, H. Matsuhara, M. Matsuura, G. Miniutti, K. Nagamine, T. Nagao, F. Najarro, T. Nakagawa, T. Onaka, S. Oyabu, A. Pallottini, L. Piro, F. Pozzi, G. Rodighiero, P. Roelfsema, I. Sakon, P. Santini, D. Schaerer, R. Schneider, D. Scott, S. Serjeant, H. Shibai, J.-D. T. Smith, E. Sobacchi, E. Sturm, T. Suzuki, L. Vallini, F. van der Tak, C. Vignali, T. Yamada, T. Wada, L. Wang

IR spectroscopy in the range 12–230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA’s large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z ∼ 6.

Loading...
Thumbnail Image
Publication

First results from GeMS/GSAOI for project SUNBIRD: Supernovae UNmasked By Infra-Red Detection

2018-02-01, Efstathiou, Andreas, E. C. Kool, S. Ryder, E. Kankare, S. Mattila, T. Reynolds, R. M. McDermid, M. A. Pérez-Torres, R. Herrero-Illana, M. Schirmer, F. E. Bauer, J. Kotilainen, P. Väisänen, C. Baldwin, C. Romero-Cañizales, A. Alberdi

Core collapse supernova (CCSN) rates suffer from large uncertainties as many CCSNe exploding in regions of bright background emission and significant dust extinction remain unobserved. Such a shortfall is particularly prominent in luminous infrared galaxies (LIRGs), which have high star formation (and thus CCSN) rates and host bright and crowded nuclear regions, where large extinctions and reduced search detection efficiency likely lead to a significant fraction of CCSNe remaining undiscovered. We present the first results of project SUNBIRD (Supernovae UNmasked By Infra-Red Detection), where we aim to uncover CCSNe that otherwise would remain hidden in the complex nuclear regions of LIRGs, and in this way improve the constraints on the fraction that is missed by optical seeing-limited surveys. We observe in the near-infrared 2.15 μm Ks-band, which is less affected by dust extinction compared to the optical, using the multiconjugate adaptive optics imager GeMS/GSAOI on Gemini South, allowing us to achieve a spatial resolution that lets us probe close in to the nuclear regions. During our pilot program and subsequent first full year we have discovered three CCSNe and one candidate with projected nuclear offsets as small as 200 pc. When compared to the total sample of LIRG CCSNe discovered in the near-IR and optical, we show that our method is singularly effective in uncovering CCSNe in nuclear regions and we conclude that the majority of CCSNe exploding in LIRGs are not detected as a result of dust obscuration and poor spatial resolution.

Loading...
Thumbnail Image
Publication

The European Large-Area ISO Survey (ELAIS): The final band-merged catalogue

2004, Efstathiou, Andreas, M. Rowan-Robinson, C. Lari, I. Perez-Fournon, E. A. Gonzalez-Solares, F. La Franca, M. Vaccari, S. Oliver, C. Gruppioni, P. Ciliegi, P. Héraudeau, S. Serjeant, A. Efstathiou, T. Babbedge, I. Matute, F. Pozzi, A. Franceschini, P. Vaisanen, A. Afonso-Luis, D. M. Alexander, O. Almaini, A. C. Baker, S. Basilakos, M. Barden, C. del Burgo, I. Bellas-Velidis, F. Cabrera-Guerra, R. Carballo, C. J. Cesarsky, D. L. Clements, H. Crockett, L. Danese, A. Dapergolas, B. Drolias, N. Eaton, E. Egami, D. Elbaz, D. Fadda, M. Fox, R. Genzel, P. Goldschmidt, J. I. Gonzalez-Serrano, M. Graham, G. L. Granato, E. Hatziminaoglou, U. Herbstmeier, M. Joshi, E. Kontizas, M. Kontizas, J. K. Kotilainen, D. Kunze, A. Lawrence, D. Lemke, M. J. D. Linden-Vørnle, R. G. Mann, I. Márquez, J. Masegosa, R. G. McMahon, G. Miley, V. Missoulis, B. Mobasher, T. Morel, H. Nørgaard-Nielsen, A. Omont, P. Papadopoulos, J.-L. Puget, D. Rigopoulou, B. Rocca-Volmerange, N. Sedgwick, L. Silva, T. Sumner, C. Surace, B. Vila-Vilaro, P. van der Werf, A. Verma, L. Vigroux, M. Villar-Martin, C. J. Willott, A. Carramiñana, R. Mujica

We present the final band-merged European Large-Area ISO Survey (ELAIS) Catalogue at 6.7, 15, 90 and 175 μm, and the associated data at U, g′, r′, i′, Z, J, H, K and 20 cm. The origin of the survey, infrared and radio observations, data-reduction and optical identifications are briefly reviewed, and a summary of the area covered and the completeness limit for each infrared band is given. A detailed discussion of the band-merging and optical association strategy is given. The total Catalogue consists of 3762 sources. 23 per cent of the 15-μm sources and 75 per cent of the 6.7-μm sources are stars. For extragalactic sources observed in three or more infrared bands, colour-colour diagrams are presented and discussed in terms of the contributing infrared populations. Spectral energy distributions (SEDs) are shown for selected sources and compared with cirrus, M82 and Arp220 starburst, and active galactic nuclei (AGN) dust torus models. Spectroscopic redshifts are tabulated, where available. For the N1 and N2 areas, the Isaac Newton Telescope ugriz Wide Field Survey permits photometric redshifts to be estimated for galaxies and quasars. These agree well with the spectroscopic redshifts, within the uncertainty of the photometric method [∼ 10 per cent in (1 + z) for galaxies]. The redshift distribution is given for selected ELAIS bands and colour-redshift diagrams are discussed. There is a high proportion of ultraluminous infrared galaxies (log10 of 1-1000 μm luminosity Lir > 12.22) in the ELAIS Catalogue (14 per cent of 15-μm galaxies with known z), many with Arp220-like SEDs. 10 per cent of the 15-μm sources are genuine optically blank fields to r′ = 24: these must have very high infrared-to-optical ratios and probably have z > 0.6, so are high-luminosity dusty starbursts or Type 2 AGN. Nine hyperluminous infrared galaxies (Lir > 13.22) and nine extremely red objects (EROs) (r - K > 6) are found in the survey. The latter are interpreted as ultraluminous dusty infrared galaxies at z ∼ 1. The large numbers of ultraluminous galaxies imply very strong evolution in the star formation rate between z = 0 and 1. There is also a surprisingly large population of luminous (Lir > 11.5), cool (cirrus-type SEDs) galaxies, with Lir - L opt > 0, implying Av > 1.

No Thumbnail Available
Publication

ISO photometry of hyperluminous infrared galaxies: Implications for the origin of their extreme luminosities

2003-02, Efstathiou, Andreas, Verma, Aprajita, Michael Rowan, Richard Mcmahon

We present 7-180μm photometry of a sample of hyperluminous infrared galaxies (HyLIGs) obtained with the photometer and camera mounted on the Infrared Space Observatory (ISO). We have used state-of-the-art' radiative transfer models of obscured starbursts and dusty tori to model their broadband spectral energy distributions (SEDs). We find that IRAS F00235+1024, IRAS F14218+3845 and IRAS F15307+3252 require a combination of starburst and AGN components to explain their mid to far-infrared emission, while for TXS0052+471 a dust torus model alone is sufficient. For IRAS F00235+1024 and IRAS F14218+3845 the starburst component is the predominant contributor whereas for IRAS F15307+3252 the dust torus component dominates. The implied star formation rates (SFR) estimated from the starburst infrared luminosities are dM*,all/dt > 1000M⊙yr-1h50-2 and are amongst the highest SFRs estimated to date. We also demonstrate that the well-known radio-FIR correlation observed for extragalactic sources extends into both higher radio and infrared power than previously investigated. The relation for HyLIGs has a mean q value of 1.94. The results of this study imply that better sampling of the IR SEDs of HyLIGs may reveal that both AGN and starburst components are required to explain their emission from the NIR to the sub-millimetre.

Loading...
Thumbnail Image
Publication

Observations and a model for the infrared continuum of Centaurus A

1999-11-21, D. M. Alexander, J. H. Hough, D. K. Aitken, D. Lutz, P. F. Roche, E. Sturm, Efstathiou, Andreas

We present ISOSWS, ISOPHOT_S and 8-13 μm observations of Centaurus A which show prominent PAH and silicate features. These and other data are used to construct a model for the infrared continuum. We find that, in a small nuclear aperture (∼4 arcsec, ∼60 pc), the spectral energy distribution is characteristic of emission from a starburst and dusty AGN torus; in larger apertures, additional components of cirrus and starburst emission are required. The model components are based on the radiative transfer models of Efstathiou et al. which include multiple scattering and the radiative effects of a dust-embedded source with a distribution of grain species and sizes. The torus component is modelled in terms of a tapered dusty disc centrally illuminated by a quasar-like source. The cirrus and starburst components are, respectively, modelled in terms of diffuse dust illuminated by the interstellar medium and an ensemble of optically thick molecular clouds centrally illuminated by hot stars. These latter components additionally include emission from small graphite particles and PAHs. Based on our overall model, the torus diameter is estimated to be 3.6pc and the best inclination angle of the torus is 45°. We present independent observational evidence for this structure. This result has implications for the detectability of tori in low-power AGN and for the use of the IRAS 60/25-μm flux ratio as an indicator of the torus inclination.

Loading...
Thumbnail Image
Publication

Photometric redshift accuracy in AKARI deep surveys

2009, Efstathiou, Andreas, M. Negrello, S. Serjeant, C. Pearson, T. Takagi, T. Goto, D. Burgarella, W.-S. Jeong, M. Im, H. M. Lee, H. Matsuhara, S. Oyabu, T. Wada, G. White

We investigate the photometric redshift accuracy achievable with the AKARI infrared data in deep multiband surveys, such as in the North Ecliptic Pole field. We demonstrate that the passage of redshifted polycyclic aromatic hydrocarbons (PAH) and silicate features into the mid-infrared wavelength window covered by AKARI is a valuable means to recover the redshifts of starburst galaxies. To this end, we have collected a sample of ∼60 galaxies drawn from the Great Observatories Origins Deep Survey-North Field with spectroscopic redshift 0.5 ≲ zspec ≲ 1.5 and photometry from 3.6 to 24 μm, provided by the Spitzer, Infrared Space Observatory and AKARI satellites. The infrared spectra are fitted using synthetic galaxy spectral energy distributions which account for starburst and active nuclei emission. For ∼90 per cent of the sources in our sample, the redshift is recovered with an accuracy |zphot - zspec|/(1 + zspec) ≲ 10 per cent. A similar analysis performed on a set of simulated spectra shows that the AKARI infrared data alone can provide photometric redshifts accurate to |zphot - zspec|/(1 + zspec) ∼ 10 per cent (1σ) at z ≲ 2. At higher redshifts, the PAH features are shifted outside the wavelength range covered by AKARI and the photo-z estimates rely on the less prominent 1.6 μm stellar bump; the accuracy achievable in this case on (1 + z) is ∼10-15 per cent, provided that the active galactic nuclei contribution to the infrared emission is subdominant. Our technique is no more prone to redshift aliasing than optical-ultraviolet photo-z, and it may be possible to reduce this aliasing further with the addition of submillimetre and/or radio data.