Now showing 1 - 1 of 1
  • Publication
    Classification of local ultraluminous infrared galaxies and quasars with kernel principal component analysis
    (Oxford University Press, 2022) ; ; ;
    Evangelos S Papaefthymiou
    ;
    Ioannis Michos
    We present a new diagnostic diagram for local ultraluminous infrared galaxies (ULIRGs) and quasars, analysing particularly the Spitzer Space Telescope's infrared spectrograph spectra of 102 local ULIRGs and 37 Palomar Green quasars. Our diagram is based on a special non-linear mapping of these data, employing the kernel principal component analysis method. The novelty of this map lies in the fact that it distributes the galaxies under study on the surface of a well-defined ellipsoid, which, in turn, links basic concepts from geometry to physical properties of the galaxies. Particularly, we have found that the equatorial direction of the ellipsoid corresponds to the evolution of the power source of ULIRGs, starting from the pre-merger phase, moving through the starburst-dominated coalescing stage towards the active galactic nucleus-dominated phase, and finally terminating with the post-merger quasar phase. On the other hand, the meridian directions distinguish deeply obscured power sources of the galaxies from unobscured ones. These observations have also been verified by comparison with simulated ULIRGs and quasars using radiative transfer models. The diagram correctly identifies unique galaxies with extreme features that lie distinctly away from the main distribution of the galaxies. Furthermore, special two-dimensional projections of the ellipsoid recover almost monotonic variations of the two main physical properties of the galaxies, the silicate and polycyclic aromatic hydrocarbon features. This suggests that our diagram naturally extends the well-known Spoon diagram and it can serve as a diagnostic tool for existing and future infrared spectroscopic data, such as those provided by the James Webb Space Telescope.