Options
Feedback and Feeding in the Context of Galaxy Evolution with SPICA : Direct Characterisation of Molecular Outflows and Inflows
Author(s)
E. González-Alfonso
L. Armus
F. J. Carrera
V. Charmandaris
E. Egami
J. A. Fernández-Ontiveros
J. Fischer
G. L. Granato
C. Gruppioni
E. Hatziminaoglou
M. Imanishi
N. Isobe
H. Kaneda
D. Koziel-Wierzbowska
M. A. Malkan
J. Martín-Pintado
S. Mateos
H. Matsuhara
G. Miniutti
T. Nakagawa
F. Pozzi
F. Rico-Villas
G. Rodighiero
P. Roelfsema
L. Spinoglio
H. W. W. Spoon
E. Sturm
F. van der Tak
C. Vignali
L. Wang
Abstract
A far-infrared observatory such as the SPace Infrared telescope for Cosmology and Astrophysics, with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last ∼10 Gyr of the Universe (z = 1.5–2), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionised gas. We quantify the detectability of galaxy-scale massive molecular and ionised outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.
Part Of
Publications of the Astronomical Society of Australia
Journal or Serie
Publications of the Astronomical Society of Australia
Volume
34
ISSN
13233580
Date Issued
2017
Open Access
Yes
DOI
10.1017/pasa.2017.46
Department
Publisher
Cambridge University Press
File(s)
Loading...
Name
div-class-title-feedback-and-feeding-in-the-context-of-galaxy-evolution-with-span-class-italic-spica-span-direct-characterisation-of-molecular-outflows-and-inflows-div.pdf
Type
main article
Size
821.25 KB
Format
Checksum