Options
Efstathiou, Andreas
Loading...
Preferred name
Efstathiou, Andreas
Translated Name
Ευσταθίου, Ανδρέας
Position
Rector, Professor
Main Affiliation
School
Scopus Author ID
7005273826
Google Scholar ID
WxhQowAAAAJ
5 results
Now showing 1 - 5 of 5
- PublicationGalaxy evolution studies with the SPace IR telescope for cosmology and astrophysics (SPICA): The power of IR spectroscopy(Cambridge University Press, 2017-11-16)
; ;L. Spinoglio ;A. Alonso-Herrero ;L. Armus ;M. Baes ;J. Bernard-Salas ;S. Bianchi ;M. Bocchio ;A. Bolatto ;C. Bradford ;J. Braine ;F. J. Carrera ;L. Ciesla ;D. L. Clements ;H. Dannerbauer ;Y. Doi ;E. Egami ;J. A. Fernández-Ontiveros ;A. Ferrara ;J. Fischer ;A. Franceschini ;S. Gallerani ;M. Giard ;E. González-Alfonso ;C. Gruppioni ;P. Guillard ;E. Hatziminaoglou ;M. Imanishi ;D. Ishihara ;N. Isobe ;H. Kaneda ;M. Kawada ;K. Kohno ;J. Kwon ;S. Madden ;M. A. Malkan ;S. Marassi ;H. Matsuhara ;M. Matsuura ;G. Miniutti ;K. Nagamine ;T. Nagao ;F. Najarro ;T. Nakagawa ;T. Onaka ;S. Oyabu ;A. Pallottini ;L. Piro ;F. Pozzi ;G. Rodighiero ;P. Roelfsema ;I. Sakon ;P. Santini ;D. Schaerer ;R. Schneider ;D. Scott ;S. Serjeant ;H. Shibai ;J.-D. T. Smith ;E. Sobacchi ;E. Sturm ;T. Suzuki ;L. Vallini ;F. van der Tak ;C. Vignali ;T. Yamada ;T. WadaL. WangIR spectroscopy in the range 12–230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA’s large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z ∼ 6. - PublicationFeedback and Feeding in the Context of Galaxy Evolution with SPICA : Direct Characterisation of Molecular Outflows and Inflows(Cambridge University Press, 2017)
; ;E. González-Alfonso ;L. Armus ;F. J. Carrera ;V. Charmandaris ;E. Egami ;J. A. Fernández-Ontiveros ;J. Fischer ;G. L. Granato ;C. Gruppioni ;E. Hatziminaoglou ;M. Imanishi ;N. Isobe ;H. Kaneda ;D. Koziel-Wierzbowska ;M. A. Malkan ;J. Martín-Pintado ;S. Mateos ;H. Matsuhara ;G. Miniutti ;T. Nakagawa ;F. Pozzi ;F. Rico-Villas ;G. Rodighiero ;P. Roelfsema ;L. Spinoglio ;H. W. W. Spoon ;E. Sturm ;F. van der Tak ;C. VignaliL. WangA far-infrared observatory such as the SPace Infrared telescope for Cosmology and Astrophysics, with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last ∼10 Gyr of the Universe (z = 1.5–2), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionised gas. We quantify the detectability of galaxy-scale massive molecular and ionised outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths. - PublicationTracing the Evolution of Dust Obscured Star Formation and Accretion Back to the Reionisation Epoch with SPICA(Cambridge University Press, 2017-11-16)
; ;C. Gruppioni ;L. Ciesla ;E. Hatziminaoglou ;F. Pozzi ;G. Rodighiero ;P. Santini ;L. Armus ;M. Baes ;J. Braine ;V. Charmandaris ;D.L. Clements ;N. Christopher ;H. Dannerbauer ;E. Egami ;J.A. Fernández-Ontiveros ;F. Fontanot ;A. Franceschini ;E. González-Alfonso ;M. Griffin ;H. Kaneda ;L. Marchetti ;P. Monaco ;T. Nakagawa ;T. Onaka ;A. Papadopoulos ;C. Pearson ;I. Pérez-Fournon ;P. Peréz-González ;P. Roelfsema ;D. Scott ;S. Serjeant ;L. Spinoglio ;M. Vaccari ;F. van der Tak ;C. Vignali ;L. WangT. WadaOur current knowledge of star formation and accretion luminosity at high redshift (z > 3–4), as well as the possible connections between them, relies mostly on observations in the rest-frame ultraviolet, which are strongly affected by dust obscuration. Due to the lack of sensitivity of past and current infrared instrumentation, so far it has not been possible to get a glimpse into the early phases of the dust-obscured Universe. Among the next generation of infrared observatories, SPICA, observing in the 12–350 µm range, will be the only facility that can enable us to trace the evolution of the obscured star-formation rate and black-hole accretion rate densities over cosmic time, from the peak of their activity back to the reionisation epoch (i.e., 3 < z ≲ 6–7), where its predecessors had severe limitations. Here, we discuss the potential of photometric surveys performed with the SPICA mid-infrared instrument, enabled by the very low level of impact of dust 1 obscuration in a band centred at 34 µm. These unique unbiased photometric surveys that SPICA will perform will fully characterise the evolution of AGNs and star-forming galaxies after reionisation. - PublicationThe European Large-Area ISO Survey (ELAIS): The final band-merged catalogue(Oxford University Press, 2004)
; ;M. Rowan-Robinson ;C. Lari ;I. Perez-Fournon ;E. A. Gonzalez-Solares ;F. La Franca ;M. Vaccari ;S. Oliver ;C. Gruppioni ;P. Ciliegi ;P. Héraudeau ;S. Serjeant ;A. Efstathiou ;T. Babbedge ;I. Matute ;F. Pozzi ;A. Franceschini ;P. Vaisanen ;A. Afonso-Luis ;D. M. Alexander ;O. Almaini ;A. C. Baker ;S. Basilakos ;M. Barden ;C. del Burgo ;I. Bellas-Velidis ;F. Cabrera-Guerra ;R. Carballo ;C. J. Cesarsky ;D. L. Clements ;H. Crockett ;L. Danese ;A. Dapergolas ;B. Drolias ;N. Eaton ;E. Egami ;D. Elbaz ;D. Fadda ;M. Fox ;R. Genzel ;P. Goldschmidt ;J. I. Gonzalez-Serrano ;M. Graham ;G. L. Granato ;E. Hatziminaoglou ;U. Herbstmeier ;M. Joshi ;E. Kontizas ;M. Kontizas ;J. K. Kotilainen ;D. Kunze ;A. Lawrence ;D. Lemke ;M. J. D. Linden-Vørnle ;R. G. Mann ;I. Márquez ;J. Masegosa ;R. G. McMahon ;G. Miley ;V. Missoulis ;B. Mobasher ;T. Morel ;H. Nørgaard-Nielsen ;A. Omont ;P. Papadopoulos ;J.-L. Puget ;D. Rigopoulou ;B. Rocca-Volmerange ;N. Sedgwick ;L. Silva ;T. Sumner ;C. Surace ;B. Vila-Vilaro ;P. van der Werf ;A. Verma ;L. Vigroux ;M. Villar-Martin ;C. J. Willott ;A. CarramiñanaR. MujicaWe present the final band-merged European Large-Area ISO Survey (ELAIS) Catalogue at 6.7, 15, 90 and 175 μm, and the associated data at U, g′, r′, i′, Z, J, H, K and 20 cm. The origin of the survey, infrared and radio observations, data-reduction and optical identifications are briefly reviewed, and a summary of the area covered and the completeness limit for each infrared band is given. A detailed discussion of the band-merging and optical association strategy is given. The total Catalogue consists of 3762 sources. 23 per cent of the 15-μm sources and 75 per cent of the 6.7-μm sources are stars. For extragalactic sources observed in three or more infrared bands, colour-colour diagrams are presented and discussed in terms of the contributing infrared populations. Spectral energy distributions (SEDs) are shown for selected sources and compared with cirrus, M82 and Arp220 starburst, and active galactic nuclei (AGN) dust torus models. Spectroscopic redshifts are tabulated, where available. For the N1 and N2 areas, the Isaac Newton Telescope ugriz Wide Field Survey permits photometric redshifts to be estimated for galaxies and quasars. These agree well with the spectroscopic redshifts, within the uncertainty of the photometric method [∼ 10 per cent in (1 + z) for galaxies]. The redshift distribution is given for selected ELAIS bands and colour-redshift diagrams are discussed. There is a high proportion of ultraluminous infrared galaxies (log10 of 1-1000 μm luminosity Lir > 12.22) in the ELAIS Catalogue (14 per cent of 15-μm galaxies with known z), many with Arp220-like SEDs. 10 per cent of the 15-μm sources are genuine optically blank fields to r′ = 24: these must have very high infrared-to-optical ratios and probably have z > 0.6, so are high-luminosity dusty starbursts or Type 2 AGN. Nine hyperluminous infrared galaxies (Lir > 13.22) and nine extremely red objects (EROs) (r - K > 6) are found in the survey. The latter are interpreted as ultraluminous dusty infrared galaxies at z ∼ 1. The large numbers of ultraluminous galaxies imply very strong evolution in the star formation rate between z = 0 and 1. There is also a surprisingly large population of luminous (Lir > 11.5), cool (cirrus-type SEDs) galaxies, with Lir - L opt > 0, implying Av > 1. - PublicationThe European Large‐AreaInfrared Space ObservatorySurvey V: ABeppoSAXHard X‐Ray Survey of the S1 Region(Institute of Physics Publishing, 2001-06-10)
; ;D. M. Alexander ;F. La Franca ;F. Fiore ;X. Barcons ;P. Ciliegi ;L. Danese ;R. Della Ceca ;A. Franceschini ;C. Gruppioni ;G. Matt ;I. Matute ;S. Oliver ;F. Pompilio ;A. Wolter ;P. Heraudeau ;G. C. Perola ;M. Perri ;D. Rigopoulou ;M. Rowan‐RobinsonS. SerjeantWe present BeppoSAX observations of the southern S1 region in the European Large-Area Infrared Space Observatory (ISO) Survey (ELAIS). These observations cover an area of ∼1.7 deg2 and reach an on-axis (∼0.7 deg2) 2-10 keV (hard X-ray, or HX) sensitivity of ∼10-13 ergs s-1 cm-2. This is the first HX analysis of an ISOCAM survey. We detect nine sources with a signal-to-noise ratio SNRHX > 3, four additional sources with a 1.3-10 keV (total X-ray, or T) SNRT > 3, and two additional sources that seem to be associated with QSOs having SNRT > 2.9. The number densities of the SNRHX > 3 sources are consistent with the ASCA and BeppoSAX log N-log S functions. Six BeppoSAX sources have reliable ISOCAM 15 μm counterparts within ∼60″. All these ISOCAM sources have optical counterparts of R < 20 mag. Five of these sources have been previously optically classified, four as QSOs and one as a broad absorption line (BAL) QSO at z = 2.2. The remaining unclassified source has X-ray and photometric properties consistent with those of a nearby Seyfert galaxy. One further HX source has a 2.6 σ ISOCAM counterpart associated with a galaxy at z = 0.325. If this ISOCAM source is real, the HX/MIR properties suggest either an unusual QSO or a cD cluster galaxy. We have constructed MIR and HX spectral energy distributions to compute the expected HX/MIR ratios for these classes of objects up to z = 3.2 and assess the HX/MIR survey depth. The BAL QSO has an observed X-ray softness ratio and HX/MIR flux ratio similar to those of QSOs but different from those found for low-redshift BAL QSOs. This difference can be explained in terms of absorption, and it suggests that high-redshift BAL QSOs should be comparatively easy to detect in the HX band, allowing their true fraction in the high-redshift QSO population to be determined. The QSOs cover a wide redshift range (0.4 < z < 2.6) and have HX/MIR flux ratios consistent with those found for nearby IRAS and optically selected Palomar-Green QSOs. This suggests that MIR-selected QSOs of R < 20 mag come from the same population as optically selected QSOs. We confirm this with a comparison of the B/MIR flux ratios of MIR and blue-band-selected QSOs.